
#superagile ⏐ www.concise.ee 1

#superagile
An introductory guide to superagility

and how to succeed at it.

Brought to you by

#superagile ⏐ www.concise.ee 2

Table of Contents

Why #superagile? 3

How #superagile was born 4

People behind the book 5

Full Stack Team 7

Business Growth 11

Priority Switch 17

Continuous Deployment 20

Trunk Based Development 24

Balanced Testing 30

Microservices 33

Automation 36

MVP Thinking 38

Short Communication Flow 42

Autonomy 45

Psychological Safety 48

Celebration 51

#superagile ⏐ www.concise.ee 3

LN

Why #superagile?
#superagile is designed in support of building scalable teams and software. It
has a growth mindset and makes it easy to respond to new business
opportunities in a quickly changing world.

It is not a process; it is a framework, approach, and a type of culture every
startup benefits from. It combines top-notch technology with agile principles and
adds a growth hacking mindset. It brings business, marketing, and development
closer together to reduce expensive communication faults while spreading
ownership feeling across all team members.

In the end, it helps save time and money. It makes innovation cheaper by
paying attention to the right thing at the right time.

It is an honest and open approach to successful digital product building.

Read more:
https://concise.ee/superagile
https://concise.ee/blog/how-does-superagile-differ-from-agile
https://concise.ee/blog/what-the-hell-is-superagile

FB IG YT

FOLLOW US ON SOCIALS

https://www.linkedin.com/company/concisechangestheworld
https://concise.ee/superagile
https://concise.ee/blog/how-does-superagile-differ-from-agile
https://concise.ee/blog/what-the-hell-is-superagile
https://www.facebook.com/concisechangestheworld
https://www.instagram.com/concisechangestheworld/
https://www.youtube.com/channel/UCK7wm7UDEIP0t6a9FGTMlqg

#superagile ⏐ www.concise.ee 4

How #superagile was born

#superagile was born on the 10th of January, 2019. It was created by Aive Uus,
Mikk Soone and Andrei Zhuk. For over half a year Aive, Mikk and Andrei had
been involved in looking deeper into Concise’s way of working and vision for the
future. Agile principles were already widely in use. It was not just about having a
few Scrum practices and saying it is agile. It was more about understanding
the real meaning behind it and taking action.

One Conciser recently gave feedback saying: “Everyone speaks about agile, but
I have never before seen it working. It seems like a mystery how many
companies find it challenging, but here it feels so simple and natural.”

In addition to agile principles, this approach involves more specifics for
ambitious digital product builders. The word #superagile was born a few days
before the Concise Growth Team (Aive, Andrei, and Mikk) flew to Helsinki to do
their first sales pitch. Why was this word chosen? While testing it out, this was
the word that got the most emotional reactions. People either loved it or
hated it. But nobody stayed neutral. Some said agile is just a big buzzword and
some enthusiastically got interested in whether it takes agile one step further.
How did the pitch go? Horribly. As first pitches usually do. Nevertheless,
something great came out of it and thus, #superagile was born.

A few months later, the #superagile score tool was also born and has been an
internal teamwork practice at Concise ever since.

In this book, we take a detailed look into the 13 elements of that tool.

Our app “Superagile” is out! It will help you to conduct the workshop yourself
for your team! Get it from the App Store or Google Play.

https://apps.apple.com/ee/app/superagile/id1547974331

#superagile ⏐ www.concise.ee 5

Aive Uus
Passionate about growth and teamwork. She has
been leading software teams for close to 20 years
in a creative way and enjoys building and
supporting highly effective product teams.

People behind the book

Also, big thanks to Amanda Lucas for copywriting
and editing, and Lisett Kruusimäe for design and
creating an actual book out of it!

Mikk Soone
Passionate developer who builds scalable software
products. Minimal-time-to-market? Quick business
value? Yes, always.

Indrek Ots
Software engineer who's interested in building
resilient systems and fostering a culture of learning
in teams.

Loore Martma
Combining the knowledge from a creative mindset
with health-behavior and psychological well-being.
Supporting teams in their communication skills to
raise awareness of a mindful workplace.

#superagile ⏐ www.concise.ee 6

This is our #superagile wheel
which you can personalize for your team or use for auditing.

Contact us to find out more about how to use it
or download our app from App Store or Google Play

M A G

mailto:hello@concise.ee
https://apps.apple.com/ee/app/superagile/id1547974331
https://play.google.com/store/apps/details?id=ee.concise.superagile_app

#superagile ⏐ www.concise.ee 7

CHAPTER ONE

FULL STACK TEAM

#superagile ⏐ www.concise.ee 8

Have you ever thought about how to improve the effectiveness of your
development teams? How to be more productive? We have heard people
wondering about it a lot and there seems to be millions of books about it.

One solution we see is having full-stack development teams. The concept is
similar to agile cross-functional teams and stream-aligned teams, which are
mentioned in Mathew Skelton and Manual Pais’ book: “Team Topologies”. The
expression came from ‘full-stack developer’, but it does not mean the same
thing. A full-stack developer is someone good at both backend and frontend
development. However, the full-stack development team has all the knowledge
they need to build this specific product (or part of the product or business
stream etc.). This includes backend, frontend, mobile development, DevOps,
UX, data analysis, business understanding, and so on. That doesn't mean
everyone is an expert in all of them, but a shared goal and vision are essential
parts of the concept. It means that everyone is aware of what is going on in
different areas and what challenges there are. Like the ball that never drops and
always stays somewhere in between, each team member needs to have a
feeling of ownership. You do not need to wait behind other teams so there is
major growth in effectiveness and productivity.

It all starts with the team. 2+2=10 is a well-known term

describing good teamwork or in other words:

“The whole is greater than the sum of its parts.”

#superagile ⏐ www.concise.ee 9

Of course, it means that the size of
the team matters. Just like Scrum
and several other sources state, we
also believe that 3 - 6 dedicated full-
time employees is the perfect size for
a self-organizing team. If it grows
bigger, being aware of everything that
is going on becomes too time-
consuming.

Another important aspect is that
there should be no knowledge or
skill that only one person can
master. Then the stress and risks are
too high. How can one go on
vacation? How does one not become
a blocker inside of the team? Sharing
goals and knowledge grows
productivity and makes
prioritization much more effortless.
Once the priority changes, the whole
team is aware of it and there is no
need to coordinate it between several
teams (as would be the case if
backend and frontend developing
occurred separately).

A case study from our own
experience - we used to have an
infrastructure team taking care of the
production environment. Now we
have a platform team that builds the
environment where all of the
development teams can handle
production activities with Kubernetes
themselves.

In 1:1s, we have received great
feedback from developers that this
has been a remarkable change
because:

it gives strong ownership feeling
it makes the process quicker
it is fun to learn new things

FU
LL

 S
TA

C
K

TE
AM

 ⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯

#superagile ⏐ www.concise.ee 10

KPIs to measure:
the team’s size and time spent in a month waiting

on blocked issues

Of course, you cannot always have all of the knowledge in the team. If
necessary, the team can ask for support from the outside, but getting it and
implementing it stays within the team’s responsibilities. That’s ownership. And
that makes everything else described in this book possible.

FU
LL

 S
TA

C
K

TE
AM

 ⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯

#superagile ⏐ www.concise.ee 11

CHAPTER TWO

BUSINESS GROWTH

#superagile ⏐ www.concise.ee 12

As discussed in the previous chapter, full-stack team members know the
business value their product brings like the back of their hand. Each person in
the team knows the answer to the ‘why’ question of every functionality they
build. And we do not mean ‘why’ the product owner wants it, but more so why
the product actually needs it. Is it a must-have, highly valuable feature that helps
the product to grow and bring more business success? Has it been validated
before putting a massive amount of effort into its development? How do you
measure the success of it afterwards? And finally how do you learn from it so
that you can make changes quickly?

Innovation is part of success, but innovation requires wise cooperation. The full-
stack team chapter discussed how to build the team itself with a shared
business vision and understanding. It is also important that development teams
work closely together with the business side (marketing and sales) and customer
support.

There is a wise saying: “One of the most damaging effects of departmental
silos is that they slow down innovation that drives growth.” We have seen
and experienced it in our own case studies too.

#superagile ⏐ www.concise.ee 13

Example One

Challenging deadlines were declared
outside of the team’s hands, so the
team needed to prioritize every small
thing wisely. Unfortunately, they were
not aware of the exact business goals
for that deadline and they failed to
prioritize everything as well as they
could have. Later on after learning the
details of what the sales team
actually needed on that particular
date, they discovered how it could
have been done much better. We will
discuss direct communication in more
detail in the next chapters to come.
Still, this example is valid for how
important it is for the whole team to
understand the business goal while
developing. They can take ownership
of delivering what is really needed
and when it’s needed. It is unrealistic
(and ineffective) to expect that the
business side and product owner can
prioritize that at such a detailed level.
Rather, their input is to explain
business priorities.

Example Two

We were building a minimum viable
product (MVP) for a small startup. We
also discussed business priorities and
adding growth into the product from
the beginning. Still, at some point,
traditional thinking kicked in – what if
the startup was working together with
the marketing team on some ads and
forgot to share those with the full-
stack development team? Luckily, we
realized it early enough to say STOP
and organized a meeting to discuss
marketing and development together.
Two things happened as an outcome.
Firstly, the marketing team received
awesome additional ideas for their ad
campaigns since developers are very
creative people too. And second,
since they know the product very
well, it is easy for them to brainstorm
how to market it. Developers
understood what functionality was
needed in the product for that
campaign and how to build it better.

BU
SI

N
ES

S
G

RO
W

TH
 ⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯

Case study:

#superagile ⏐ www.concise.ee 14

Growth hacking
Those examples sound basic and
straight forward, but still, you can see
such things happening over and over
again in startups and bigger companies.
A growth hacking mindset is needed
for companies of all sizes because
either you are a beginning business
trying to reach your first engaged users
or you already have an existing product
that is used by millions each day. Either
way, you still do not want to waste time
and money on the wrong priorities or
wrong functionality. And you definitely
want to learn from your end-users as
early as possible.

“ Growth hacking blends product
development, analytics, and online
marketing to rapidly generate,
prioritize, and test ideas

definition taken from the book: “Hacking
Growth” by Sean Ellis and Morgan Brown

“
BU

SI
N

ES
S

G
RO

W
TH

 ⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯

#superagile ⏐ www.concise.ee 15

How many of the built functionalities
have a measurable hypothesis set
before it is developed?

How many of the features that turned
out to be not-so-successful could have
been prevented with better cooperation
and idea validation beforehand?

Taking action
Let’s get into more specifics. What are the first steps you need to take in your
full-stack team to bring more business growth?

1. Explain and assign business KPIs to the full-stack team. They are
responsible for delivering the same KPIs as the rest of the company. Forget
technical KPIs that pull the team in different directions. If there are several,
then always remember to say which one is the Northern Star at that
moment.

2. Always explain and understand the business’ ‘why’ of every single feature
and also the product’s long-term vision.

3. From time to time, make the whole team walk in the shoes of the end-user.
Depending on the product, it could be essentially stepping into the user’s
shoes or personally meeting the real end-users and interviewing them. Yes,
it is mostly the product owner’s job, but every developer in the team should
be included and present once in a while.

4. Plan how to measure the progress and success of each feature. In addition
to monitoring the technical statistics, the full-stack team should follow how
the product is used daily. Of course, sensibly - measuring the things that
truly matter. A metric that means nothing for one company may be
another’s core growth lever, so choose wisely.

5. Trust them to make the right decisions in prioritizing once the development
team has done the first 4 steps. Allow them to brainstorm new features that
bring more growth and support to sales and marketing.BU

SI
N

ES
S

G
RO

W
TH

 ⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯

#superagile ⏐ www.concise.ee 16

The more people are committed to business goals,
the easier it is to reach them.

BU
SI

N
ES

S
G

RO
W

TH
 ⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯

CREATIVE
MARKETING

AUTOMATION
& ENGINEERING

EXPERIMENTS
& DATA

GROWTH
HACKING

#superagile ⏐ www.concise.ee 17

CHAPTER THREE

PRIORITY SWITCH

#superagile ⏐ www.concise.ee 18

We live in a world where things are
always changing. We learn from
yesterday’s actions, new
opportunities appear, or COVID-19
starts to spread worldwide... For
startups and growth companies, it is
essential to use these opportunities
as they come. This should happen
very smoothly in development teams
as well or you may lose valuable time.
If a change of direction is needed,
then it should be done now and not in
the next sprint that starts in two
weeks.

Processes and sensible mindsets can
help you react quickly and wisely in
those situations. If the team is aligned
by business KPIs (and the Northern
Star) as explained in the business
growth chapter, it is easy to change
their work priorities once they are
notified of any changes.

Understanding why there are changes
and having them part of a daily
routine, makes priority switching less
stressful. It also saves time and
increases commitment.

Naturally, technical architecture
needs to support making switching
easier as well. The next chapters will
give a detailed overview on how to do
that with a minimal time-to-market
mindset (unified with continuous
deployment and trunk based
development).

One action the team can do is set up
their working process to be ready for
constant changes. It could be through
discussing changes during a standup
or assigning one person each week
who is responsible for quickly
reacting to changes. It doesn’t matter
what it is exactly as long as it is
agreed on beforehand.

#superagile ⏐ www.concise.ee 19

<
In the past, we’ve had a situation
where the whole team concentrated
on releasing a new product in one
specific European market. Instead, a
complete priority switch to release it
first in the Arabic market came up,
which meant an entirely different
culture and language. It was a crucial
business opportunity and the team
was able to go through the day
switching all priorities stress-free.

How much time is needed for switching priorities?
How stressful is it for the team members?

PR
IO

RI
TY

 S
W

IT
C

H
 ⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯⎯

⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯

#superagile ⏐ www.concise.ee 20

CHAPTER FOUR

CONTINUOUS
DEPLOYMENT

#superagile ⏐ www.concise.ee 21

Continuous deployment (CDP) is a
software release process where
changes are automatically deployed to
the production environment without
human interaction. It relies solely on
automated testing and an automated
release pipeline.

Releasing as often as possible encourages you to validate the smaller changes
to your users which allows you to adapt quickly. With more experiments like
these, your innovation and business will grow exponentially while learning
quicker than competitors.

Every line of code written by a developer only starts
to bring value once it finally reaches the end-users.

The delay of manual releasing itself is keeping a business from achieving the
goals that the line of code was meant to convey.

The smaller the increments of change, the less risk of breaking things. Which in
turn, means faster recovery from failure.

Continuous deployment gives better software quality by forcing best practices
in testing, monitoring, communication, and developer mindset. When there is no
manual testing, the developers protect themselves from mistakes by writing
tests that matter. They write business logic that they understand because there
is no one manually verifying it before it reaches the end-users. This forces better
communication between business and development. When changes are in
production, there is no false hope that everything is always OK (it never is - even
if you test manually by 10 testers) - so you have to have a good monitoring
setup to detect problems early, possibly even before the users can report them.
Continuous deployment is the trigger to business growth.

#superagile ⏐ www.concise.ee 22

Continuous deployment means
to rewrite your processes.

Start by implementing CDP on a
technical level. Set up pipelines in
your CI tool, making all master
commits to run automated tests and
deployments. Add basic monitoring
to catch exceptions and performance
problems.

Now let everyone know how it works
and encourage them to try it out.

Start to execute this approach by
introducing it to both business and
development. It is imperative to
involve development as early as
possible so they can automatically
start writing the necessary tests.
Then, you can continuously improve
the monitoring and testing. And lastly,
check what the end-users are doing.

How many deployments do you do each day (per developer)?
How long does it take from code push to reach production?

C
O

N
TI

N
U

O
U

S
DE

PL
O

YM
EN

T
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯

#superagile ⏐ www.concise.ee 23

Case study:

We were developing an integration to a third-party system. We had the basics all
worked out and were having a meeting to discuss the last details. Once we
agreed on the details, we started to talk about when we would implement them.
As it was a very high priority mission, we said “Ok, we’ll do the changes right
now with a few hours of coding. So, you can expect to see the changes in
production in a couple of hours.” The third-party was having a WOW effect,
“That’s so fast!” they said. They started to talk about sprint release and how
previously they would only be able to release it by the following week.... a week
lost for their business. And that’s only this time. If they need to do additional
changes, it will be another week. And the same for all other integrations they
were doing. It’s a waste of time.

Another example is when we had a team many years ago that was struggling
with releasing quality products. In theory, everything was fine: sprint, quality
assurance, release management, etc. However, there were also a lot of
problems. DevOps reports started to show that the team should release more
often to increase the quality. And that is what we did. Overnight, we went from
releasing once per month to releasing multiple times per day. And it worked: the
quality increased.

There were two key elements that resulted in this success:

Developer mindset. If you write code that goes to production just after you
push it, you will take another look at your code, test it locally, and you won’t just
throw it to the QA. It was a game-changer.

Quality of automated tests. It is considered essential to have a good test suite
to start practicing continuous delivery. In this case, it was the opposite. Once
CDP came, the tests magically became relevant. We knew there was no manual
verification anymore, so developers had to write tests to protect themselves.

C
O

N
TI

N
U

O
U

S
DE

PL
O

YM
EN

T
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯

#superagile ⏐ www.concise.ee 24

CHAPTER FIVE

TRUNK BASED
DEVELOPMENT

#superagile ⏐ www.concise.ee 25

How it allows us to release faster
When doing smaller commits often and
releasing them as soon as they are ready, we
minimize the change failure rate and mean time
to recovery (MTTR). It has been measured that
in total you get five times fewer problems
when you release more often vs only once
per week. And if you get into trouble, then
MTTR is up to 100 times faster*. If you think
about how this is possible, the key here is
small commits. If you release one commit at a
time and they are small, then it’s more likely
that the developer did it correctly rather than
writing code for a week and hoping that all of it
works in the end. Also, if you release a hundred
commits at once and something goes wrong,
you have to start investigating which one of
them is the faulty one. It takes time and your
MTTR is suffering. If you release one commit at
a time, it’s obvious where the problem is and
you can either revert or fix it quickly with the
confidence that nothing else is affected.
*State of DevOps Report 2017, Puppet Labs

We like to keep the feedback loop from end-users to developers as
short as possible. For that, we need to practice continuous deployment
(CDP). Trunk based development is the fundamental cornerstone to pull off
these frequent releases.

A source-control branching model, where developers collaborate on code in a single
branch called ‘trunk’*, resist any pressure to create other long-lived development
branches by employing documented techniques. They, therefore, avoid merge hell, do
not break the build, and live happily ever after.
* master, in Git nomenclature
Source: https://trunkbaseddevelopment.com/

https://trunkbaseddevelopment.com/

#superagile ⏐ www.concise.ee 26

Drawback of merging
Now let’s talk about merging. There
are two key points to address and
the first is merge hell. If you need to
merge two branches that have
significant differences, it’s a pain.
With smaller changes, this problem
becomes almost non-existent, which
increases the developer happiness
factor. However, when you have
multiple long-lived branches, it might
mean writing code on wrong
assumptions. Someone else might
have already changed the code on
something you depend on and it
creates misunderstandings that result
in bugs. It’s also common that if you
release on a fix branch and commit
straight to fix branches, you
sometimes forget to merge it back to
the mainline. Again, then you’re in
trouble. Working with one long-
lived branch avoids both of these
drawbacks.

It is also common that the branching
model is a copy of what is already
represented in your organization
structure and bureaucracy model. If
you are in such a situation, you can
start by modernizing the organization
from down to up. And reason through
the benefits of doing smaller changes
at once. It’s even possible to change
corporates to become more agile.

GitFlow is a horrible match for an
agile company and has unfortunately
driven change away from the
developer’s perspective. Therefore, it
creates a less efficient organization.

Don’t just do it because it has
been done like this for years,
question the status quo.

TR
U

N
K

BA
SE

D
DE

VE
LO

PM
EN

T
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯

#superagile ⏐ www.concise.ee 27

Master vs short-lived feature branches
It’s possible to practice trunk based development with either committing
straight to master or doing short-lived feature branches where you create a pull
request to master when a small batch of code is ready. First of all, the choice
between these two is less important than the choice between trunk based
development and GitFlow. It’s crucial to consider which one of the trunk based
development forms is the right fit for your business.

The general rule is that if the team is small and the codebase is understandable,
then it’s OK to commit straight to master. However, these days teams rarely
grow beyond 5 to 6 members anyway. And with microservices, the codebase is
more isolated so we have found that size is not the best way to describe the
difference here.

The vital difference between them is how DevOps-y you want to be. If you push
code straight to master, you can follow the CI/CD pipeline and check the
database/logs as part of doing that particular task. This is the shortest feedback
loop possible. You can check right away to see how your code is working on the
end-users. It’s like a sports car - you get to be in direct contact with the road.

It’s not always possible to create
valuable pieces of code for your users
within a matter of hours. It is,
however, still beneficial to keep the
commits small as explained
previously.

So, what should you do?

Feature flags. An “if staging” or “if
false” code block is better than having
a separate branch. Everyone sees this
code and can integrate into it.

Branch by abstraction. When doing
significant changes, still do them in
smaller batches, but create an
abstraction so everyone can see that
there is another implementation
coming.

Techniques to practiceTR
U

N
K

BA
SE

D
DE

VE
LO

PM
EN

T
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯

#superagile ⏐ www.concise.ee 28

Pushing straight to master also
challenges a bit of how to both force
code reviews for all code made and
how to actually review the code. With
pull requests, it’s easy. The code
won’t land in master without review.
However, with straight to master, we
need tooling for that.

At Concise, we use code review
dashboards that track all commits.
The dashboard will show the commits
that are without review, the commits
that you have to review, the commits
that you have to fix as per review, and
also how many reviews each member
is doing (so you can load balance the
reviewer). If one of the metrics is
turning worse, it will turn red. For
example, if there is a commit that has
not been reviewed within 24 hours, it
turns red and will then get immediate
attention from the developers.

Another challenge is grouping the
commits for a review so you don’t
have to review multiple, very small
commits. Instead, it will be only one
issue at once. For this, we are using
Upsource, a handy tool by JetBrains.
This tool is also what gives us
dashboards. There are other options
as well, but these are mostly
dedicated code review tools (and you
can’t just rely on Github).

How long does it take from code push to production?

If you have short-lived branches,
what is their mean time of living and how do you

detect if they are short-lived in practice?

TR
U

N
K

BA
SE

D
DE

VE
LO

PM
EN

T
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯

#superagile ⏐ www.concise.ee 29

Exceptions
Your team gets a new developer -
should they still commit straight to
master? Well, it depends. It’s quite
beneficial to do pair programming
with new devs (at first) so they get to
know the environment and the true
spirit of the DevOps you have.
However, sometimes it’s fine to
review the code from a short-lived
feature branch as well. It’s up to you
to decide what is reasonable.

Say you are developing a mobile
application or some kind of device
where you don’t control when the
user is about to update the code. Or
worse, if there are more restrictions in
between such as the slow review
process from the Apple App Store.
Here you can still follow the general
rules of trunk based development,
but you might want to create release
tags every time you send the new
version to flight.

Developers
When a new developer joins Concise,
we are accustomed to the fact that
they may be used to doing branches
and they want to continue doing so.
We stay calm and take it easy. It’s
okay that they might be a bit afraid of
the new way of working. They will still
get a warm welcome and time to
make themselves comfortable. For
some, it takes a month to see the
benefits of our approach. But for
other people, sometimes it takes half
a year. However, once you get used
to it, you won’t want to go back to
branches (especially GitFlow). No one
does. We have multiple testimonials
from our developers who, in the
beginning, could not believe the way
we work. But once they switched
over, they actually became strong
advocates of trunk based
development.

TR
U

N
K

BA
SE

D
DE

VE
LO

PM
EN

T
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯

#superagile ⏐ www.concise.ee 30

CHAPTER SIX

BALANCED TESTING

#superagile ⏐ www.concise.ee 31

Why is it important?
Testing 100% of every single thing
is impossible. Testing close to
everything is expensive. Almost no
business can afford it. The important
thing is to find a balance between
what to test, how much to test, and
which way to test. This is so that you
spend the minimum time possible on
it while still guaranteeing maximum
quality.

How should it be done?
Do it through a combination of testing
pyramids and monitoring.

Tests
For backend, we usually start with
integration tests. On a technical level,
it means that we spin up the
application (think SpringBootTest)
and mock all external integrations
(think Wiremock), but use an actual
database in Docker. Then send JSON
to the API and wait for something
back. This covers the API for
backwards compatibility and as a
benefit, gets the code coverage
relatively high as well. This tests most
of the happy flows. Next, we add unit
tests for each bit of complicated logic
that was not tested by the happy
flow. The balance between unit and
integration tests depends on the
stack used - some systems are
easier to unit test, but if integration

tests are convenient, it’s beneficial to
start from there. To make sure that
the happy flows work in the actual
environment, we create a few of them
in a staging environment. This is
similar to those used in the
integration phase and gives us the
confidence to use CDP.

For frontend, we unit test the logic in
React components. In the beginning
of the project, we also test manually
many times. As the project matures,
we add some automated end-to-end
tests using tools such as Selenium.
These tests are to cover the absolute
minimum happy flow that lets us
know if it is possible to log in and
proceed with the most important
flows.

For apps, it’s similar to frontend
testing. Unit tests are rudimentary for
logic and end-to-end tests as well.
Since it’s difficult to release apps as
fast as we would like to, we need to
practice gradual roll-out. If possible,
we prefer Progressive Web Apps
because it’s easy to update as we go.

Monitoring
Now that you have an idea of how the
tests can be balanced, always
consider that there will be problems
you can’t detect with tests. For this,
we have extensive monitoring in
place.

We aim for optimal time spent on testing.

#superagile ⏐ www.concise.ee 32

Four steps you should prepare
Test what is reasonable since the
unthinkable will happen anyway - and
when it does, you want to catch it
before the user reports come in.

How to be prepared:

1. Apply a zero-exception policy
that detects all application
problems. Alert yourself
immediately and find the root
cause. Most logging stacks have
a feature to send notifications
based on the search string, such
as “exception”. Sentry has
created a service out of it – give
it a try. Catching intermittent
issues early saves you from
bigger downtime later on. So,
remember to continuously check
each and every one of these
issues.

2. Monitor performance in different
layers of your system. Put
emphasis on the bottlenecks;
database monitoring can be
difficult, but it is essential.

3. Add end-to-end tracing. Check
the anomalies.

4. Use synthetic API / interface
monitoring to detect happy flow
problems. Those test if users can
log in, view, and click the main
buttons. If this is failing, you
know there is a critical issue with
the system.

All of these will trigger alerts to
developers - it may be a Slack
notification or an automatic phone
call, but it will allow developers to
respond quickly.

An important part of the testing
strategy is to understand when it’s
beneficial to test and when the
monitoring will be more effective.
However, you will need both anyway
and both of them are critical to use
together with CDP.

So in the end, testing and monitoring
will give you the best quality and
speed for the money.

BA
LA

N
C

ED
 T

ES
TI

N
G

 ⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯

#superagile ⏐ www.concise.ee 33

CHAPTER SEVEN

MICROSERVICES

#superagile ⏐ www.concise.ee 34

As organizations grow, so does the software they produce. The classical way to
evolve software is to keep adding new features to the existing one. This is called
monolithic architecture.

Microservices, on the other hand, are small, autonomous, independently
deployable and releasable pieces of software that work together via well-
defined APIs. This means that instead of a big monolithic application, we have
many smaller components. At first glance, it might seem more complex to have
more moving parts. Microservices indeed introduce their own set of challenges,
but they help you grow your organization and provide value to your customers
faster.

Organization alignment
One of the problems we see with monolithic architectures is that they hinder
growth. As we scale our organizations by introducing new teams, we can see
that people start to step on each other's toes. More coordination between
different parties is needed when working on new features or performing releases.
Even though the teams might be independent on the organization chart, they all
have a single integration point - the monolith. Essentially, the software
architecture doesn't reflect the organization's communication paths.

Microservices enable you to align your organization's architecture with your
software architecture. Instead of having a single integration point where all teams
must meet, every team can have their well-defined areas of responsibility.

We've experienced this with our customers where we have
several teams, each containing 6 or 7 members. They work
together, but have their own microservices that they're
responsible for. Teams aren't coupled to a monolith anymore.
They're more independent, autonomous, and can release
software without having to coordinate with other teams. This
means we can ship features faster and provide value to
customers sooner.

#superagile ⏐ www.concise.ee 35

Resilience
A bulkhead is a wall within the hull of a
ship that also creates watertight
compartments. In the case of a hull
breach, bulkheads stop the water from
moving from one section of the vessel
to another, containing the damage.
The same analogy can be used when
comparing microservices vs
monoliths. Issues in one part of the
monolith can take down an entire
application. On the other hand,
microservice boundaries can be
designed as bulkheads. We can
contain a failure in a single service
and it won’t affect other parts of the
system. The system as a whole might
experience degraded functionality, but
parts that are not affected can still
provide value to customers.

Microservices enable us to design
an architecture for low-risk
releases. There's always a risk when
we make changes to the system. But if
we can contain changes to a small
region in our architecture, the
potential blast radius is smaller.

Fast Feedback
An essential part of writing software is
how fast you get feedback. The faster
we can detect issues, the easier it is to
fix them. Microservices are small
compared to monoliths. This means
that the time it takes to build, test, and
deploy them is also shorter. We can
get our code deployed faster and
issues in production systems can be
fixed sooner.

For example, it could take an hour to
build, test, and deploy a large
monolith. Imagine you need to make a
small change to the system in order to
fix a critical production issue. Your
time to recovery is at least one hour.
That's assuming you detected the
problem immediately when it occurred
and had a solution for it ready. But in
reality, time to recovery would be
longer than one hour because it takes
time to react, investigate, and develop
a solution. Oppositely, microservices
can be built and released in minutes.

Even worse, large deployment times
lead to infrequent releases. Since we
feel that going through the long
process of releasing the monolith
multiple times per day is painful, we
tend to collect changes into a single
batch and release them together. This
has a counterintuitive effect of making
every release that much riskier.

Conclusion
Microservices aren't a silver bullet and
still come with their own set of
challenges. However, we believe that
the benefits outweigh the costs for
setting up and maintaining many
independent services.

M
IC

RO
SE

RV
IC

ES
 ⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯

#superagile ⏐ www.concise.ee 36

CHAPTER EIGHT

AUTOMATION

#superagile ⏐ www.concise.ee 37

“ If a human operator needs to touch
your system during normal
operations, you have a bug.
Carla Geisser, Google SRE

“
Automating manual work saves time and raises developer and customer
satisfaction. By automating tedious and repetitive tasks, we can spend more
time on important work that's meaningful for our business.

Manual, repetitive work is slow and error-prone. Often, this work gets delegated
to dedicated departments.

For example, software testing is the QA department’s
responsibility and application deployment is assigned to
operations teams. By doing that, we unintentionally create
dependencies between teams. For instance, engineering
teams have to wait until QA tests their work or new features
aren’t shipped until operations are ready to deploy them.

With automation, we can move the work closer to the source. We can give
product teams more autonomy and help them get feedback faster. Automation
enables us to ship features more quickly with less cost and improved quality.

Automation is not a checklist of things you have to accomplish. For us, it's a
mindset. It's about noticing manual, repetitive, and automatable work that
comes up over and over again.

#superagile ⏐ www.concise.ee 38

CHAPTER NINE

MVP THINKING

#superagile ⏐ www.concise.ee 39

MVP = Minimum Viable Product

Since it is a common term in the
startup world, we will not explain it in
detail. If it’s new for you, we suggest
reading “The Lean Startup” by Eric
Ries.
His BUILD > MEASURE > LEARN
cycle is an approach you have seen
in this book for several chapters now.
We talked about measuring in the
business growth chapter and getting
rapid feedback in the more technical
chapters like microservices, CDP, and
trunk based development. So, when
we talk about MVP thinking in
#superagile, we don’t mean building
the product’s first MVP. We talk about
the mindset of always thinking
about the smallest part that starts
to bring value and is measurable. It
doesn’t matter if you are just starting
your journey or you have millions of
users already. There is also a term
called Minimum Viable Feature (or
MVF), which would be more correct
in this situation, but let’s keep it
simple. We are talking about the way
of thinking.

But why?
Why do we want to build a technical
architecture that enables quick
feedback? Why do we want to spend
time figuring out the smallest part?
And why do we want to measure
everything? Because that is the
secret highway to business growth as
mentioned numerous times before.

It’s the best way to learn about your
users and truly the best way to avoid
spending time on things that are not
needed. It all starts with thinking.
“Dream big, start small” is a motto
we use. Once you master MVP
thinking, everything else described in
this book easily follows.

Learn as early as possible
If you plan to add a new feature,
maybe the first thing you can add is a
button in the product with no actual
functionality. When the user presses
the button, they get a message
saying this feature is coming soon. At
the same time, you learn how many
users have pressed this button. If
none, then why spend time building
it? Either the button is in the wrong
place or there is no interest in that
feature. You merely added a button,
measured how users reacted to it,
and learned from it.

#superagile ⏐ www.concise.ee 40

Challenges
We tend to assume that everyone
thinks the same way we do and that
we know everything. Or at least the
product owner does. The reality is
that we don’t know everything.
Humans are unpredictable.

In practice, MVP thinking can be
challenging. The example with the
button seems simple, but often the
situation is more complex. Does
beautiful design matter? Does adding
edge cases matter?

Is it possible to break it into smaller
pieces? There are no straightforward
answers; it all depends on the users
and the situation. But the more you
practice, the better you get at it. Since
we love our product, we want to offer
the best and always add a little extra...

But that’s a habit worth getting rid of.

Here is a case study of a discussion
we have heard so many times when
building mobile apps: should it be
available for both iOS and Android
from the very start?
Our first reaction is always yes. But
how about doing some research on
which is more popular with potential
customers and then first concentrating
on that? Well, you can already start to
learn and gain feedback from iOS
users while bug fixing the Android
version.
Again, sometimes it’s more
complicated. The app or feature might
be for some team activity and there’s a
high probability that people in that
team have different phones. So then
the value of the product or feature
comes from the team using it together.

So…it depends.

M
VP

 T
H

IN
KI

N
G

 ⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯

Checklist:
ü Before you start any development,

have you done all that is possible
to make sure this product / feature
is needed? Do you understand the
pain that goes with it? Have you
done the proper questionnaires or
even interviews? Paper prototype
testing? Question everything you
feel sure about.

ü Make sure you plan out how to
measure. Otherwise, you might
end up not having the data to learn
from.

ü Use MVP thinking in every step of
your development process.

ü Take time to learn. As you
remember, switching the priority is
welcomed in #superagile teams.

#superagile ⏐ www.concise.ee 41

Measure how quickly you go through the whole
cycle – from starting at the initial idea to learning

from data on average.

In most cases, it should be less than a week
(unless we talk about building a completely new

product from scratch).

#superagile ⏐ www.concise.ee 42

CHAPTER TEN

SHORT
COMMUNICATION

FLOW

#superagile ⏐ www.concise.ee 43

Communication faults are expensive.
Yet, they happen often. Task managers
who translate business needs into
detailed tech tasks tend to end up in
situations where real needs get "lost in
translation". You need teamwork and
not individual experts who do their
thing and don’t care about the rest.
We shared an example about the team
who did not understand the sales
team’s needs in the business growth
chapter. That is why reducing the
risk of communication faults can
save a lot more money than a 10%
cheaper hourly price.

In our #superagile approach, we are
always looking for a better balance
between different roles and direct
communication. Of course, it would
not make sense to include everyone
everywhere - that is a waste. There are
different roles such as people lead,
product lead, tech lead, product
owner, and so on. However, those
lead roles support the team to
achieve their goals, not to play
telephone in between. If one person
becomes a blocker, you need to
reorganize your communication.

Quick test-question: “do all developers
in the team speak directly to the
business side?” Our case study shows
that this change can boost up
effectiveness even in big corporations.
Business side people are much
happier as well - their needs are met
and they are better aware of the
progress and challenges.

Direct communication is essential
for using continuous deployment.
Continuous deployment supports
business growth. But one of the main
excuses developers use to avoid it is
whether or not they can be sure that
they have built the right thing. In that
case, why did they spend time doing
expensive development if they were
unsure? Direct communication is
crucial here. Improve that if needed,
but keep continuous deployment.

#superagile ⏐ www.concise.ee 44

Always make sure communication
channels and meetings are planned
wisely so that it won’t overburden
anyone. Discuss how to improve it at
each retrospective. Here are the three
most used tips from our #superagile
teams:

1. Use multiple Slack channels.
Create a new one for each noteworthy
subject and involve everyone who
should be aware of it. Avoid direct
messaging.

2. One person in a team is responsible
for answering business questions.
Switch that person daily or weekly.

3. Product vision and goals should be
overcommunicated rather than under.

Keep it simple!

Less time waiting on others
means less information

that gets lost.

How often does someone in the team say:
“ this could have been prevented
if we knew that beforehand ” ?

SH
O

RT
 C

O
M

M
U

N
IC

AT
IO

N
 F

LO
W

 ⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯

#superagile ⏐ www.concise.ee 45

CHAPTER ELEVEN

AUTONOMY

#superagile ⏐ www.concise.ee 46

Autonomy is tricky. It’s impossible to
say that one team has full autonomy if
it just exists in a bigger ecosystem.

Nothing will work without good
cooperation. As mentioned quite a
few times, even closer collaboration
between developers and business
people enables more growth than in
traditional organizations. All full-stack
teams align according to the Northern
Star and each team cannot choose
different goals. Moving in the same
direction is necessary for growth,
but so is understanding the ‘why’. It
becomes the team’s goal and vision.

However, there are multiple places
where teams can and should be
autonomous. You already read from
the microservices chapter that good
software architecture gives the team
some autonomy. Why do we say that
#superagile is a framework or culture
and not a process? Because we do
believe that the effective detailed
process depends on each specific
team. What works for one might not
work for the other.

It’s all about creativity, inspection,
and adaptation.

We have created a 3-hour workshop
about teamwork, which includes both
the technical and process sides. This
is everything starting from default
workflow products up until the team
practices retrospectives and culture
canvas. In agile, there’s Shu Ha Ri,
which means that first you follow
the rules, then break the rules, and
in the end, create your own rules.
Why so? Because to understand the
meaning behind the rules you
should experiment with them. Once
you have understood the real reason,
meaning, and learned that something
does not work for you effectively, you
can try to make changes.

Eventually, you are free to master
your own rules as long as you keep
the original need covered. For us, that
means autonomy. Yes, there is a
starting point, but each self-
organizing team is unique and free to
find their own ways to move towards
the common goal!

#superagile ⏐ www.concise.ee 47

CHAPTER TWELVE

PSYCHOLOGICAL
SAFETY

#superagile ⏐ www.concise.ee 48

We all know that keeping the team
effective and productive is something
difficult to create and easy to lose.
Similar to building trust goes the
atmospheric sense of psychological
safety. Maybe you have heard of
Google’s study on effective teams.
Psychological safety was the first
and most important thing:
we couldn't agree more.

If we feel safe to take risks and be
vulnerable in front of our team, we
can learn from our failures, overcome
obstacles and challenges, and be
creative in finding innovative
solutions. Innovation, however, is
needed for business growth (another
element of #superagile). And so is
constant learning.

In the technology world, new
frameworks and tools are
continuously released. You might
lose valuable time and money if you
always stick with using something
because you have always used it.

Robert Kiyosaki has said: “In today’s
fast-changing world, it’s not so much
what you know anymore that counts,
because often what you know is old.
It is how fast you learn. That skill is
priceless.” But for learning, we need
a safe environment.

So, the easy control-questions here
could be: “do I feel comfortable
enough that I can ask when there is
something I don’t understand?” or
“can I speak up even when I am
thinking differently from others?”

https://rework.withgoogle.com/print/guides/5721312655835136/

#superagile ⏐ www.concise.ee 49

Psychological safety creates the
culture of inclusion: a diverse range
of ideas, questions, and solutions that
give rise to the safety of being seen
and heard. Though, it’s a delicate
feeling because it can easily be
affected by the opinions of others or
even questioning the decisions made
by other roles in the company.

The trick is that safety starts with
being an example. So, acknowledge
your own safety first and then show
and share it with others. Be present
with your team. It includes the little
things like mindful listening, noticing,
giving support, or even asking
questions to show you are there and
care about them. It is done through
presenting a non-judgmental
approach to everyday challenges and

praising failure. These aspects are
part of an amazing journey toward
finding the right things to focus on.
But sometimes, even eye contact
may be enough - instead of gazing at
your phone or laptop during
meetings, look the other person in
the eye to confirm that their
message comes through. During
#superagile workshops, we leave
laptops in another room or switched
off.

In fact, our case study shows that
after organizing company-wide failure
pitching, the overall culture became
more open and honest.

Notice if someone makes a mistake
or the outcome isn’t as expected

- do they share it freely or start to find
excuses?

Notice in team retrospectives when a
previous time period is discussed

- is time spent discussing who did what
or on what to learn and improve?

PS
YC

H
O

LO
G

IC
AL

 S
AF

ET
Y

 ⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯

#superagile ⏐ www.concise.ee 50

CHAPTER THIRTEEN

CELEBRATION

#superagile ⏐ www.concise.ee 51

“ We've got to stop every once in a while
and celebrate one another and our team
victories, no matter how small. Yes,
there's more work to be done, and things
could go sideways in an hour, but that will
never take away from the fact that we
need to celebrate an accomplishment
right now.

Brené Brown has written:

“

When we found ourselves in a situation where releasing was so stress-free and
part of each day, we realized that we did not celebrate anymore. If you release
once a month or once in half a year, it is such a big event that celebration comes
more naturally. But we don’t want it to be that way since releasing often brings
more business success (as you have hopefully understood by now).

Besides, is it really just releasing something we want to celebrate? How about
business growth? Or failures? Or great teamwork?

If you are creative, you will find millions of things to celebrate that are
aligned with your business’ mindset. Celebrating helps everyone in the team
feel the value they have brought to this world. It unites and increases ownership.

#superagile ⏐ www.concise.ee 52

Often people think that celebrating means going out together or having some
kind of team event; however, it can be many other things too.

It can be a ‘thank you’ or praise at the end of a retrospective. It can be
dedicated time to think of the achievements or laugh at the failures.

So once you have mastered all of the elements of #superagile, never forget
this last one - celebrate!

#superagile ⏐ www.concise.ee 53

M

Hi! We hope you enjoyed this book.

Good news!

Our app “Superagile” is out!

It will help you to conduct the workshop yourself for your team!

Get it from the App Store or Google Play.

Are you interested in redeeming a 2 hour #superagile workshop
for your team that results in your individual success plan for

improving productivity? Click the button below and let’s chat!

LN FB IG YT

FOLLOW US ON SOCIALS

M A G

mailto:hello@concise.ee
https://www.linkedin.com/company/concisechangestheworld
https://www.facebook.com/concisechangestheworld
https://www.instagram.com/concisechangestheworld/
https://www.youtube.com/channel/UCK7wm7UDEIP0t6a9FGTMlqg
mailto:hello@concise.ee
https://apps.apple.com/ee/app/superagile/id1547974331
https://play.google.com/store/apps/details?id=ee.concise.superagile_app

#superagile ⏐ www.concise.ee 54

* Book version 1.3
It will keep changing over time as we learn and experience more ourselves.

